Gulded Notes:

8.1 Vectors guided not...

Quiz Review

7-5 and 8.1 Word Prob...

13 Two parametric equations are shown below, where $t \ge 0$.

$$x = \frac{1}{3}\sqrt{t} + 3$$

$$y = 4t^2 - 7$$

Which nonparametric equation can be used to graph the curve described by the parametric equations?

A
$$y = \frac{4}{9}(x+1) - 7$$

B
$$y = \frac{4}{3}(x+3) - 7$$

$$C y = 36(x-1)^4 - 7$$

X-3=3/E 3x-9=E 1x-35=t

$$x = 5\cos(t) + 3$$
$$y = 5\sin(t) - 1$$

Where is the center of the circle located?

$$\frac{(x-3)^2 + (y+1)^2}{25} = 1$$

$$\frac{(x-3)^2 + (y+1)^2}{25} = 1$$

$$\frac{(3,-1)}{25} = 1$$

Today's Goal: Apply our knowledge of parametric equations to solve vectors.

Real-World EXAMPLE 6

Resolve a Force into Rectangular Components

A. GARDENING While digging in his garden, Will pushes a shovel into the ground with a force of 630 newtons at an angle of 70° with the ground. Draw a diagram that shows the resolution of the force that Will exerts into its rectangular components.

rectangular
components
= x & y forces

 $51070 - \frac{4}{730}$ Y = 686 N $\cos 70 - \frac{2}{730}$ X = 250 N

Real-World EXAMPLE 6

SOCCER A player kicks a soccer ball so that it leaves the ground with a velocity of 39 feet per second at an angle of 37° with the ground. Find the magnitude of the horizontal and vertical components of the velocity.

$$5 \text{ in } 37 = \frac{4}{39}$$
 $1 = 23.5 \text{ Pt/s}$

$$(x = 31.1 \text{ PLS})$$

KeyConcept Finding Resultants

Triangle Method (Tip-to-Tail)

To find the resultant of a and b, follow these steps.

Step 1 Translate b so that the tail of b touches the tip of a.

Step 2 The resultant is the vector from the tail of a to the tip of b.

Real-World EXAMPLE 5

Guided Practice

ROWING Jamie rows her boat due east at a speed of 20 feet per second across a river directly toward the opposite bank. At the same time, the current of the river is carrying her due south at a rate of 4 feet per second. Find Jamie's speed and direction relative to the shore.

$$70^{2} + 4^{2} = \vec{v}^{2}$$

 $400 + 16 = \vec{v}^{2}$
 $\vec{v} = 20.4 \text{ Pt/s}$
 $\tan^{-1}(\frac{4}{20}) = \Theta$
 $\Theta = 11.3^{\circ} \text{ South of east}$

Real-World EXAMPLE 5

Use Vectors to Solve Navigation Problems

AVIATION An airplane is flying with an airspeed of 475 miles per hour on a heading of 70° east of North. If an 80-mile-per-hour wind is blowing 60°west of north, determine the velocity and direction of the plane relative to the ground.

72=4757+802-1475)(80) cosso")

Notation

061.8° Is read as 61.8° east of due north.

N30°W Is read as 30° west of north.

Real-World EXAMPLE 3

Find the Resultant of Two Vectors

HIKING While hiking in the woods, Shelly walks 2 kilometers N30°W from her camp, and then walks 2 kilometers directly east. How far and at what quadrant bearing is Shelly from her camp?

parallelgram method

Zem 300 V3

horizontal = -1+2=1 vertical = $\sqrt{3}$

tan- (1)=60°

12+132=C2

4=c2 N30°E

Assignment: Page 488 19,21,35,37,43,49,68 Quiz on Wednesday:)

7.5+8.1 Word Problems by

	2000 y	
1.	20° 1 4 2000 (08 70= X a) hor = 3288.9 N	
	× 1879.4 N=x Vert = 171 N	-
	1500 (05-20=X	
	1500 1409. 5N = X	
	2000 sin-70 = y	
	$(684N-4)$ b) $\sqrt{3288^2+171^2} = 3292.4 N$	
	1500 sin-70=y (pythagorean thm)	
	- 513 N = Y	
	c) no because taking away from one angle would increase	
	c) no, because taking away from one angle would increase the other argle. The difference would be the same:	
2.	$1.2^2 + \vec{v}^2 = 3.2^2$	
	72 = 8.8	
	$\vec{V} = 3 \text{ m/s}$	
3.		
	22:05 72 = X horritonial	
	172° 6.8 N The face would increase with	
	x adecrease in argle	
	90 1	
4.	T (94 (1194m)	
	tan (and	=35
	-187.9- 97.9	-
	horizontal = - 187.9 +90 = -97.9 m 90-55 705	W
	vertical=684 n	

2.
$$X=tV_0 \cos\theta = t(28)\cos(60) = 14t$$
 $V=tV_0 \sin\theta - \frac{1}{2}gt^2 + h_0 = t(28)\sin(60) - \frac{1}{2}(32)t^2 + 5(-24.25t - 16t^2 + 5)$
 $8a)X=tV_0 \cos\theta = t(100)\cos(39) = 77.7t$
 $V=tV_0 \sin\theta - \frac{1}{2}gt^2 + h_0 = t(100)\sin(39) - \frac{1}{2}(32)t^2 + 0 = -16t^2 + 62.9t$
 $V=-16(\frac{x}{77.7})^2 + (62.9(\frac{x}{77.7})$
 $V=-16(\frac{x}{77.7})^2 + (62.9(\frac{x}{77.7})$
 $V=-0.00265 \times x^2 + 0.80952 \times x^2$