Today's Objectives:

- · Analyze and graph equations of parabolas.
- · Write equations of parabolas.

Sketch the graph of $y = x^2$.

Can you use a translation to sketch $y = (x - 3)^2$ by hand?

Now graph $y + 2 = (x - 3)^2$. Identify the translations and sketch by hand. $y = (x - 3)^2 - 2$ right 3, down 2

Could you use translations to sketch $y = x^2 - 6x + 9$? Yes, but more difficult

- What do you know about this graph from the given equation? γ -int: (0,9)
- How could we rewrite the equation to find the vertex?

$$y = (x-3)^2 + 9 - 9$$
 (Complete the square)
 $y = (x-3)^2$

Could you use translations to sketch $y = x^2 + 4x + 11$?

- What do you know about this graph from the given equation? Y-int: (0,11)
- How could we rewrite the equation to find the vertex?

$$y = (x+2)^2 + 11 - 4$$

 $y = (x+2)^2 + 7$

You Try: Sketch $y = x^2 - 10x + 9$

$$y=(x-5)^2-16$$

 $y=(x-5)^2-16$

What is different about this equation? $(y-2)^2 = x+1$

What do you think it will look like?

The y'is squared mitead of the x. Will be a sideways parabolar.

Sketch $y^2 - 10y = x - 4$ (y-5)2-25 = x-4 (-21,5) $(Y-5)^2 = X-4+25$

Unit 6 Page 3

$$(x-h)^2 = 4p(y-k)$$

For all conic equations, the squared terms are written on the left side.

Orientation: opens vertically

Vertex: (h, k)

Focus: (h, k + p)

Axis of Symmetry a: x = h

Directrix d: y = k - p

$$(y-k)^2=4p(x-h)$$

Orientation: opens horizontally

Vertex: (h, k)

Focus: (h + p, k)

Axis of Symmetry a: y = k

Directrix d: x = h - p

For $(x + 1)^2 = -4(y - 2)$, identify the vertex, focus, axis of symmetry, and directrix. Then graph the parabola.

next page

$$(x+1)^2 = -4(y-2)$$
 $-4 = 4p$
 $p = -1$

Vertex: $(-1, 2)$
fous: $(-1, 2+-1) = (-1, 1)$
 $aos: x = -1$

directrix: $y = 2-1$
 $y = 3$

For $(y-3)^2 = -8(x+1)$, identify the vertex, focus, axis of symmetry, and directrix. Then graph the parabola.

$$(y-3)^2 = -8(x+1)$$
 $4p = -8$
 $p = -2$

Vertex ((-1, 3))

focus: (-1+-2,3) = (-3,3)

aOS: (y=3)

directrix: X = -1 - 2

* focus is always inside the parabola directrix is always outside the parabola

Real-World Example 2 Characteristics of Parabolas

SOLAR ENERGY A trough solar collector is a length of mirror in a parabolic shape that focuses radiation from the Sun onto a linear receiver located at the focus of the parabola. The cross section of a single trough can be modeled using $x^2 = 3.04y$, where x and y are measured in meters. Where is the linear receiver located in this cross section?

$$\chi^{2} = 3.04y$$
 $(\chi - 0)^{2} = 3.04(y - 0)$
 $4p = 3.04$
 $p = 0.76$

focus: (h, K+p)

Write $x^2 - 8x - y = -18$ in standard form. Identify the vertex, focus, axis of symmetry, and directrix. Then graph the parabola.

$$\chi^{2} - 8\chi = \gamma - 18$$
 $(\chi - 4)^{2} = \gamma - 18 + 16$
 $(\chi - 4)^{2} = (\gamma - 2)$
 $(\chi - 4)^{2} = (\gamma - 2)$

Write $y^2 + 16x = 55 - 6y$ in standard form. Identify the vertex, focus, axis of symmetry, and directrix. Then graph

the parabola.

$$Y^{2}+6y=-16x+55$$

$$(Y+3)^{2}=-16x+55+9$$

$$(Y+3)^{2}=\left(-16x+64\right)$$

$$(Y+3)^{2}=-16(x-4)$$

$$4p=-16$$

$$p=-4$$

Vertex:
$$(4, -3)$$
focus: $(4+-4, -3) = (0, -3)$
 $aos: y=-3$
directrix: $x=4-4$
 $x=8$
, directrix

Assignment: page 428 (1,3,11,13,15-23 odd)