

Graph $g(x) = \frac{1}{2}x + 4$ and fill in the table.

Graph f(x) = 2x - 8 and fill in the table

x	g(x)
-10	-1
-8	0
-6	1
-4	2
-2	3
0	4
2	5
4	9
6	7
8	8

Х	f(x)
-1	-10
0	-8
1	-6
2	-4
3	-2
4	Ö
5	2
6	4
7	6
8	8

1. What do you notice about the ordered pairs in each function? Is there a relationship between f(x) and g(x)?

X & y Switch

2. Graph the line y = x on the same graph. Describe your lines in relationship to this one.

9(x) & f(x) are reflected over the line y=x

To find the inverse of a function:

Symbol:

$$f^{-1}$$

Find the f^{-1}

a)
$$f(x) = \{(4, -3), (2, 8), (3, -8), (0, -3)\}$$
 b) $y = 3x-7$ c) $f(x) = -\frac{1}{2}x + 3$ f $f(x) = \{(-3, 4), (8, 2), (-7, 3), (-3, 0)\}$ $\begin{cases} x = 3y + 7 \\ x - 7 = 3y \end{cases}$ $\begin{cases} x = -\frac{1}{2}y + 3 \end{cases}$ 2. $\begin{cases} x = -\frac{1}{2}y + 3 \end{cases}$ 3. $\begin{cases} x = -\frac{1}{2}y$

b)
$$y = 3x-7$$

c)
$$f(x) = -\frac{1}{2}x + 3$$

 $x = -\frac{1}{2}y + 3$
 $x - 3 = -\frac{1}{2}y - 2$

Practice: Find the inverse of the following functions:

1)
$$f(x) = 3x + 5$$

 $X = 3y + 5$
 $x - 5 = 3y$
 $\frac{x - 5}{3} = y$

2)
$$g(x) = \frac{1}{3}x - 12$$

 $X = \frac{1}{3}y - 12$
 $3x + 12 = \frac{1}{3}y \times 3$
 $3x + 3b = y$

Domain:

Range:

> true for all linear

Real-World Application:

Mr. Desmond decided to go to the North Carolina State Fair. Entry into the fair was \$8, and then each ride was an additional \$2.

a) Write a function f(x) to describe the total cost of going to the fair, with x representing the amount of rides purchased.

b) Find f(3) and describe its meaning in context.

c) If Mr. Desmond paid \$20 at the fair, how many rides did the ride? Show your algebral

$$70 = 2x + 8$$

 $12 = 2x$
 $\frac{12 = 2x}{2}$ $x = 6$ rides

d) Write a function $f^{-1}(x)$ to describe the number of rides purchased given the total cost x.

$$X = 2y + 8$$

 $X - 8 = 2y$
 $X - 8 = 2y$

e) If you went to the State Fair and spent \$40, how many rides did you ride?

$$1 = \frac{40 - 8}{2}$$
 $1 = \frac{32}{2}$
 $1 = \frac{32}{2}$
 $1 = \frac{32}{2}$